Exercise 55

Find the absolute maximum and absolute minimum values of f on the given interval.

$$
f(t)=t-\sqrt[3]{t}, \quad[-1,4]
$$

Solution

Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(t) & =\frac{d}{d t}(t-\sqrt[3]{t}) \\
& =1-\frac{1}{3} t^{-2 / 3} \\
& =1-\frac{1}{3 t^{2 / 3}} \\
& =\frac{3 t^{2 / 3}-1}{3 t^{2 / 3}}
\end{aligned}
$$

Set what's in the numerator equal to zero, and set what's in the denominator equal to zero. Solve both equations for t.

$$
\begin{array}{rlrl}
3 t^{2 / 3}-1 & =0 & 3 t^{2 / 3} & =0 \\
t^{2 / 3} & =\frac{1}{3} & t^{2 / 3} & =0 \\
t^{2} & =\frac{1}{27} & t & =0 \\
t=-\frac{1}{\sqrt{27}} \text { or } t & =\frac{1}{\sqrt{27}} & t & =0
\end{array}
$$

$t=-1 / \sqrt{27}$ and $t=0$ and $t=1 / \sqrt{27}$ are within $[-1,4]$, so evaluate f at these values.

$$
\begin{aligned}
f\left(-\frac{1}{\sqrt{27}}\right) & =-\frac{1}{\sqrt{27}}-\sqrt[3]{-\frac{1}{\sqrt{27}}}=\frac{2}{3 \sqrt{3}} \approx 0.3849 \\
f(0) & =0-\sqrt[3]{0}=0 \\
f\left(\frac{1}{\sqrt{27}}\right) & =\frac{1}{\sqrt{27}}-\sqrt[3]{\frac{1}{\sqrt{27}}}=-\frac{2}{3 \sqrt{3}} \approx-0.3849 \quad \text { (absolute minimum) }
\end{aligned}
$$

Now evaluate the function at the endpoints of the interval.

$$
f(-1)=-1-\sqrt[3]{-1}=0
$$

$$
f(4)=4-\sqrt[3]{4}=4-2^{2 / 3} \approx 2.4126 \quad \text { (absolute maximum) }
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $[-1,4]$.

The graph of the function below illustrates these results.

