Exercise 55

Find the absolute maximum and absolute minimum values of f on the given interval.

$$f(t) = t - \sqrt[3]{t}, \quad [-1, 4]$$

Solution

Take the derivative of the function.

$$f'(t) = \frac{d}{dt} \left(t - \sqrt[3]{t} \right)$$
$$= 1 - \frac{1}{3} t^{-2/3}$$
$$= 1 - \frac{1}{3t^{2/3}}$$
$$= \frac{3t^{2/3} - 1}{3t^{2/3}}$$

Set what's in the numerator equal to zero, and set what's in the denominator equal to zero. Solve both equations for t.

$3t^{2/3} = 0$	$3t^{2/3} - 1 = 0$
$t^{2/3} = 0$	$t^{2/3} = \frac{1}{3}$
t = 0	$t^2 = \frac{1}{27}$
t = 0	$t = -\frac{1}{\sqrt{27}}$ or $t = \frac{1}{\sqrt{27}}$

$$t = -1/\sqrt{27}$$
 and $t = 0$ and $t = 1/\sqrt{27}$ are within $[-1, 4]$, so evaluate f at these values

$$f\left(-\frac{1}{\sqrt{27}}\right) = -\frac{1}{\sqrt{27}} - \sqrt[3]{-\frac{1}{\sqrt{27}}} = \frac{2}{3\sqrt{3}} \approx 0.3849$$
$$f(0) = 0 - \sqrt[3]{0} = 0$$

$$f\left(\frac{1}{\sqrt{27}}\right) = \frac{1}{\sqrt{27}} - \sqrt[3]{\frac{1}{\sqrt{27}}} = -\frac{2}{3\sqrt{3}} \approx -0.3849 \qquad \text{(absolute minimum)}$$

Now evaluate the function at the endpoints of the interval.

. –

$$f(-1) = -1 - \sqrt[3]{-1} = 0$$

$$f(4) = 4 - \sqrt[3]{4} = 4 - 2^{2/3} \approx 2.4126$$
 (absolute maximum)

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval [-1, 4].

www.stemjock.com

The graph of the function below illustrates these results.

